

High Performance and Low Power Modified Radix-2⁵ FFT Architecture For High Rate WPAN Application

B Pushparaj Department of ECE K. S. Rangasamy College of Technology Namakkal, India pushparaj125@gmail.com C Paramasivam Department of ECE K. S. Rangasamy College of Technology Namakkal, India sivamvlsi@gmail.com

Abstract- This paper presents a high speed and low complexity modified radix-2⁵ 512-point Fast Fourier transform (FFT) architecture using an eight data-path pipelined approach for high rate wireless personal area network applications. A novel modified radix-2⁵ FFT algorithm that reduces the hardware complexity is proposed. This method can reduce the number of complex multiplications and the size of the twiddle factor memory. It also uses a complex constant multiplier instead of a complex Booth multiplier. The results demonstrate that the total gate count of the proposed FFT architecture is17201. Furthermore the highest throughput rate is up to 2.4GS/s at 300MH.

Keywords- Fast Fourier transform (FFT), modified radix-2⁵, orthogonal frequency-division multiplexing (OFDM), wireless personal area network (WPAN)

I. INTRODUCTION

With the ever increasing demand for multimedia applications using wireless transmissions over short distances, the millimeter wave (mmWave) 60 GHz Wireless Personal Area Network (WPAN) has been intensively researched for many years. Currently, the IEEE 802.11 Task Group ad (IEEE 802.11ad) is developing a standard for the mmWave Wireless Local Area Network (WLAN) and WPAN systems. High rate WPAN systems will be provided for various high speed multimedia applications such as home network systems and real time video streaming services in short range indoor environments. In the PHY layer design of high rate WPANs, the Orthogonal Frequency Division Multiplexing (OFDM) modulation has been adopted, and the FFT architecture is a key component. The FFT/IFFT architecture has a high hardware complexity in the OFDM modulation of high rate WPAN systems. One OFDM symbol in the IEEE 802.11ad standards consists of a length of 512 subcarriers [1].

In recent years, there has been some research in the design of multi-path pipelined FFT architecture that provides a high throughput. Many FFT processor architectures are introduced in order to utilize the OFDM transmission, such as a Single path Delay Commutator (SDC), Multipath Delay Commutator (MDC), Single path Delay Feedback (SDF), and Multipath Delay Feedback (MDF). Among the various FFT architectures, the MDF architecture is frequently used as a solution to provide a throughput rate of more than 1 GS/s [3]–[5]. However, for applications that provide a throughput rate of over 2 GS/s, the number of data-paths can be increased to 8 or 16, which increases the hardware cost. The area becomes even larger because the memory modules are duplicated for the 16 data path approach. In order to reduce the area and power consumption, several FFT algorithms and dynamic scaling schemes have been proposed [2]–[6].

The radix of the algorithm greatly influences the architecture of the FFT architecture and the complexity of the implementation. A small radix is desirable because it results in a simple butterfly. Nevertheless, a high radix reduces the number of twiddle factor multiplications. The radix r^k algorithms simultaneously achieve a simple butterfly and a reduced number of twiddle factor multiplications [8]. The radix-2 algorithm is a well known simple algorithm for FFT processors, but it requires many complex multipliers. The radix-4 algorithm is primarily used for high data throughput FFT architectures, but requires a 4-point butterfly unit with high **ISSN: 2349 - 6363**

complexity. Recently, radix-2⁴ the FFT algorithm and architecture have been studied in order to reduce the number of complex multipliers [2], [4]. In this brief, a novel modified radix-2⁵ FFT algorithm and a 512-Point FFT/IFFT architecture, which can provide a high throughput of 2.4 GS /s, are proposed. The key concepts for achieving a high data throughput reduced Power and Area.

The organization of this brief is as follows. Section II describes the proposed modified radix -2 ⁵ FFT algorithm, and Section III describes the proposed 512-point radix-25 FFT architecture. In Section IV describes the results. Finally, conclusions are provided in Section V.

II. MODIFIED RADIX-25 FFT ALGORITHM

A discrete Fourier transform (DFT) of length N is defined as follows: $X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk}$, $k = 0, 1, \dots, N-1$ (1)

Where W_N is the twiddle factor and denotes the N th primitive root of unity, with its exponent evaluated modulo N .k is the frequency index and n is the time index [2]. The radix- 2^{k} algorithm has the same butterfly structure regardless of the k value. The 512-point FFT computation with radix -2^k algorithm consists of nine arithmetic stages. The radix- 2^{k} algorithm is formulated using k – dimensional linear index mapping. The radix-2⁵algorithm can be expressed as various formulas using a common factor algorithm. The radix-2⁵ algorithm is given as follows.

Applying a 6-D linear index map

-- - 1

$$n = \left\langle \frac{N}{2}n1 + \frac{N}{4}n2 + \frac{N}{8}n3 + \frac{N}{16}n4 + \frac{N}{32}n5 + n6 \right\rangle_{N} ;$$

$$n_{l_{1}}n_{2}n_{3}n_{4}n_{5} = 0, 1$$

$$n_{6} = 0, \dots, \frac{N}{32} - 1$$

$$k = \left\langle k_{1} + 2k_{2} + 4k_{3} + 8k_{4} + 16k_{5} + 32k_{6} \right\rangle_{N}$$

$$k_{l_{1}}k_{2}, k_{3}, k_{4}, k_{5} = 0, 1$$

$$k_{6} = 0, \dots, \frac{N}{32} - 1.$$
(2)

The radix-2 ⁵algorithm is reformulated into two decomposing methods (Method 1 and Method 2), which are called the modified radix-2⁵ algorithm. The common factor algorithm takes the form of

$$X(k_{1} + 2k_{2} + 4k_{3} + 8k_{4} + 16k_{5} + 32k_{6})$$

$$= \sum_{n6=0}^{\frac{N}{32}-1} \sum_{n5=0}^{1} \sum_{n4=0}^{1} \sum_{n3=0}^{1} \sum_{n2=0}^{1} \sum_{n1=0}^{1} \times x \left(\frac{N}{2} n_{1} + \frac{N}{4} n_{2} + \frac{N}{8} n_{3} + \frac{N}{16} n_{4} + \frac{N}{32} n_{5} + n_{6} \right) W_{N}^{nk}$$

$$= \sum_{n6=0}^{\frac{N}{32}-1} [J_{\frac{N}{32}}(n_{6}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}) \times W_{N}^{n_{6}(k_{1}+2k_{2}+4k_{3}+8k_{4}+16k_{5})}] W_{\frac{N}{32}}^{n_{6}k_{6}}$$
(3)

The method 1 of the modified radix- 2^5 algorithm is expresses as follows:

$$=\underbrace{(-1)^{n_1k_1}(-j)^{n_2k_1}(-1)^{n_2k_2}}_{Stage\ 1\ BU}\underbrace{Stage\ 2\ BU}_{Stage\ 2\ BU}$$

. .

~ 1

Stage 5BU

The common factor algorithm using other factoring method takes the form of

$$X(k_{1} + 2k_{2} + 4k_{3} + 8k_{4} + 16k_{5} + 32k_{6})$$

$$= \sum_{n_{6}=0}^{\frac{N}{32}-1} \sum_{n_{5}=0}^{1} \sum_{n_{4}=0}^{1} \sum_{n_{3}=0}^{1} \sum_{n_{2}=0}^{1} \sum_{n_{1}=0}^{1} \sum_{n_{2}=0}^{1} \sum_{n_{1}=0}^{1} \sum_{n_{2}=0}^{1} \sum_{n_{2$$

The Method 2 of the modified radix-2⁵ algorithm is expressed as follows

$$W_{N}^{\left(\frac{N}{2}n_{1}+\frac{N}{4}n_{2}+\frac{N}{8}n_{3}+\frac{N}{16}n_{4}+\frac{N}{32}n_{5}+n_{6}\right)(k_{1}+2k_{2}+4k_{3}+8k_{4}+16k_{5}+32k_{6})}$$

$$Stage 1TF \qquad Stage 2 TF$$

$$(-1)^{n_{1}k_{1}}(-j)^{n_{2}k_{1}}(-1)^{n_{2}k_{2}}W_{16}^{(2n_{3}+n_{4})(k_{1}+2k_{2})}$$

$$Stage 3TF \qquad Stage 4TF$$

$$\times (-1)^{n_{3}k_{3}}(-j)^{n_{4}k_{3}}(-1)^{n_{4}k_{4}}W_{N}^{(16n_{5}+n_{6})(k_{1}+2k_{2}+4k_{3}+8k_{4})}$$

$$Stage 5TF$$

$$\times (-1)^{n_{5}k_{5}}W_{\frac{N}{16}}^{n_{6}k_{5}} \times W_{\frac{N}{32}}^{n_{6}k_{6}}$$

$$Stage 5BU$$

Each method has butterfly computation and twiddle factor multiplication at each stage. Equations (4) and (6) show the butterfly stages and twiddle factor multiplications of each stage. The twiddle factors W_{32}^n and W_{16}^n in (4) and (6) have complex numbers. If each radix-2⁵ decomposing methods (Method 1 and Method 2) are used independently for the 512-point FFT computation, the number of twiddle factor multiplications tends to increase. However, the number of twiddle factor multiplications can be reduced by combining the Methods 1 and 2 of the modified radix-2⁵ algorithm, which is called mixed method. The complex multiplication of the twiddle factors, W_{32}^n , W_{16}^n , and W_8^n , can be implemented in the canonic signed digit (CSD) constant multiplier, which contains the fewest number of non-zero digits [10]. Hence, the area and power consumption of the

(6)

complex multipliers can be reduced. The results show that the proposed FFT architecture using the mixed method of the modified radix-2⁵algorithm has the lowest total normalized area of complex multipliers. Thus, it has best area efficiency as the FFT architecture.

III. PROPOSED ARCHITECTURE

In this brief, an eight parallel data-path 512-point modified radix-2⁵ FFT architecture is proposed, as shown in Fig.6.There are two modules based on the modified radix-2⁵ algorithm that reduce the number of twiddle factor multiplications. The first module, which consists of five processing elements (PEs), is realized using Method 1 of the modified radix-2⁵ algorithm, and the second module is realized using Method 2. The proposed architecture consists of butterfly units, complex Booth multipliers, complex constant multipliers, first-in first-out (FIFO), and a control unit.

A. Butterfly Units

The butterfly units perform complex additions and subtractions of two input data x[n] and x[n+n/2]. The behavior of the butterfly units is as follows. All input values are saved into the FIFO until the N/2th input is entered. Then, the butterfly units conduct calculations between the input values and FIFO outputs, after entering the $(N/2) + 1^{st}$ input. During the last clock cycles, all butterfly calculations are performed at each stage [1]. Among the butterfly outputs, the complex addition outputs are fed to the next stage. And, the complex subtraction outputs are saved in the FIFO, and then during the next clock cycles, the FIFO outputs are fed to the next stage. Butterfly unit 1 (BU1) conducts complex additions and subtractions only. However, butterfly unit 2 (BU2) includes twiddle factor multiplication utilizing the multiplexers and control signals.

B. Complex Booth Multiplier with Error Compensation

The twiddle factor multiplication is conducted using fixed width complex multipliers. The twiddle factor values stored in the read-only memory (ROM) are used as the multiplicand in the complex Booth multiplier. The modified Booth algorithm is used widely for high speed multiplications. Since the maximum clock rate of the FFT processor depends on the critical path of the complex Booth multiplier, three-level pipelined complex Booth multiplier is used for high-speed operation.

Figure 1: Block diagram of the Complex booth Multiplier

C. Complex Constant Multiplier

The proposed FFT architecture uses constant multipliers based on the can conical signed digit (CSD) representation for the complex multiplication arithmetic in stages 2, 3, and 7. The twiddle factor W_8 has only one coefficient, but twiddle factors W_{16} and W_{32} have three and seven coefficients, respectively. Mostly the existing research is using complex Booth multipliers for the twiddle factor W_{32} multiplication. However, in our design, the complex CSD constant multiplier has been used for the twiddle factor W_{32} multiplication [8]. Also, the common sub-expressions sharing (CSS) technique reduces the hardware complexity of the complex CSD constant multiplier [10], as shown in Fig.5. The constant multiplier using the CSS technique is implemented

using the common calculation patterns X1, X2, and X3. The proposed FFT processor applied CSD constant multiplier instead of complex Booth multiplier at several stages. Thus, the hardware complexity of complex multiplier is decreased by at least 54% in comparison with using complex Booth multiplier. In addition, the twiddle factor LUT size is reduced to 50% compared to the designs using the complex Booth multipliers.

Figure 2: Block diagram of the Complex constant multiplier

IV. RESULTS

The appropriate word length and quantization error performance evaluation of the proposed FFT architecture was determined using a fixed-point simulation prior to the hardware implementation. The architecture of the proposed FFT/IFFT processor was designed in Verilog HDL and simulated to verify its functionality. Both the simulation and synthesis steps were performed using the XILINX design tool and SYNOPSYS design tool 120nm CMOS technology.

The proposed processor has 17201 gate counts and the operating clock frequency is 300 MHz The throughput rate of the proposed architecture is up to 2.4GS/s at 300 MHz, which is enough to meet the specification of IEEE 802.11ad standard. Both designs presented in [3] and [5] are 2048-point FFT processors for OFDM-based WPAN applications, which do not target the existing specific standards. Although the number of parallel data-paths in the proposed design is double than that of the four parallel 2048-point FFT architecture presented in [3], which indicates a more competitive and lower hardware complexity as compared to the conventional architectures.

Messages				_						_		_				_
👌 (nodule2)dk 🛛 1	y.															کی
👌 (module:2/mode 🛛 1																
🛃 /nodule2/sel2 🛛 01		01														
🐏 /nodule2/in_a_re 🛛 11	1101100	11101100														
🛃 /nodule2/n_a_in 🛛 01	1001100	01001100														
🕂 /nodule2/in_b_re 🛛 11	1101100	11101100					ļ –									
🕂 🍦 (modulez/in_b_in 🛛 01		01010111														
₽� (module2(coeff_) 11	1101111	11101111														
🛃 /nodule2/coeff_q 🛛 01		01011111														
👌 (module 2)s1 🛛 1							İ									
👌 (module 2/s2 🛛 0																
🔷 (module2/s3 🛛 1																
🔷 (module2)s4 🛛 1																
🔷 (module2)/s5 🛛 1																
🗜 👌 (module2/outp_re 🛛 11	1010011	11010011														
🖬 🎝 /module2/outp_in 🛛 01	1111101	01101101														
🔶 (module:2/count 🛛 53	3728	\$3723	53724	53725	53726	53727	51728	53729	53730	53731	53732	53733	53734	53735	53736	53737
Hodule2/nux_out_re 11	1101100	11101100														
E-👌 (nodule2/hux_out_in 01	1010111	01000111							1							
💀 🖓 (module2/ap0 🛛 01	1010110	01000110							01101010							
🛃 /nodule2/op1 10	0011001	10011001							11110000							
₽-� /nodule2/ap00 10	0011001	10011001					<u> </u>									
🗜 🅎 (module:2/op11 🛛 01		01010110														
₽� (module2/op02 01	1010110	01000110														
🗜 🅎 (module2/op12 10	0010001	10011001					<u> </u>									
₽-�/module2/op03 01	110001	01000001			01110001		-									
₽-Ŷ (module2/op13 01	1100101	00111011			01100101											
₽-> (module2/op04 01	1100101	00111011					100101									
₽-••• /module2/op14 01	1110001	01000001					110001									
H- Inodule2/op05 01	100 3000	01001000						00011101								
H- module2/op15 00	011011	00011011						00101110								
H- Inodule2/op(6 01	100 1000	01001000						00011101								
Ligit Nov	5373700 ns	7020 ns	527	1400 ms	5270	in mining Mine	C111111	Still re	Lerrer 10	i i i i i i i i i i i i i i i i i i i	111111111 (272	Mins	\$272	an a	5272	ururudu Mis
Cursor 1	5372717 ns					87	2717 rs	ared 19			2010			144119		

Figure 3: Simulation of the proposed eight parallel data path 512-point modified radix-2⁵ FFT/IFFT architecture.

spacations	Places Syst	em \varTheta				11 23 AM 🖓	
10.1					Design Vision - TopLevel 1 (Main)		1
dit Yiew	Select Highla	pht List Heran	ctry Design	Attributes	chematic Inning Jest Power Window Help		
10 F	1000	s (1) 🗖 🕽 *	- 💷 💷 🗆		Man Man	-100 0	
and and					chematic 2 Man		
ogical + •	Cells (Herari	chical)		-			
	Cell Name	Fiel Native	Cell Path	-			
-D.	Du0	ETYADX	w0				
P-D-	(Dul	bu2_0	441	- H.			
-101	(D 81)	FIFO_0	101				
-DI	1D Ib 2	FIED_6E	10.2				
- D1	(Dm)	F#0_67	83				
-404	(Dm4	PPO_06	82-4	1.1			
-101	4D mo	FFO_65	85	1.1			
-DI	ED ID 6	FFD_64	10.6			The second se	
-DI	(DB?	FIFO_63	817				
- 101	D-B-B	FFD_62	8:8				
-104	(Dino)	FFO_61	109				
- ®I	(1)1010	FIFO_60	m10		CONTRACTOR DE LA CONTRACTA DE LA C		
-124	(D In 11	FIFO_59	8233				
-1D1	(Dm12	FFO_58	812	1.1			
-101	1D:03.3	FPD_57	813				
-101	1D:m14	PFO_56	m14				
-10+	(D1015	FF0_55	015	1.1			
-1DH	(D 16 16	FFO_54	8016	-1			
- DI +	4	wither .		1 .5			
		Hier 3		0	Schematic 2 Hain		
tion0+r	of combinat	ional cells:	8	60			
Humber.	of nequent:	al celle:		34			
flumber.	of ball/inc.			45			
Hunter	of reference	100		131			
from Los							
Hencent	inational e	Tex: 1064	-500000				
liet. Int	econnect e	itma) 576	,009761				
Total a	TRAL ACTOR	1662	1.559763				
8			2226000				
denign,	vialore	same i casag	n, informatio				
desilan.	ATRIAD>						

Figure 4: Simulation result of Area Report

Table I. Synthesized Area Report

S.No	Description	Area
1	Combinational area	10642.250000
2	Non-Combinational area	5982.500000
3	Net Interconnect area	576.809763
4	Total cell area	16624.750000
5	Total area	17201.559763

Applications	Places Sys	item 🛞					11:25 A	м (1)
				Design Visio	on - TopLevel 1 (Ma	in)		
Edit View	Select Highl	ight List Hera	rchy Design Attri	butes Schematic Timin	ig jiest Power Wini	dow Help		
68	000	- 0 0	+ 🖸 🗐 🚍 🗃		Main	*	0.00	
S.Hurel			10	x Schematic 2 Mai	n			
Logical H A	Cells (Hierar	rchical)		•				
-D=	Cell Name	Bet Name	Cell Path					
-21	(Bu0	mux	u0					
+DI	Dul	bu2 0	ul					
-DI	201	FEO 0	101					
-DI	EHb2	FFO 68	tb2					
-DI	1D1b3	FFO 67	103					
-101	10104	FED 66	84					
-101	10 lb5	FEO 65	85					
-DI	Dibs	FEO 64	10.6					
DI	D167	FEO 63	Ib7					
DI	DINE	FEO 62	IDE .				0	
-21	20109	FEO 61	869					
-21	10-1610	FED 60	Ib10			termenting not su	TOSCHAMA AND	
-101	(Dib11	FED 59	B11					
Ð	(Dib12	FEO 58	m12					
-21	12/b13	FEO 57	B13					
-101	(Dib14	FEO 56	m14					
DI	THIN15	FEO 55	B15					
-101	Dib16	FED 54	p15					
DI +	1	11.780	1.4	-				
\$		Hier_1		•	Schematic 2 Main	n	1	
						<u></u>	J	
		Technology I	Collection .	Testane.	Here a			
Pourr	Group	Poper	Power	Fourr	Poter (5) Attra		
io_pad		0.0000	0.0000	0,0000	0.0000 (0.00%)		
пеногу		0.0000	0.0000	0.0000	0.0000 (0.00%)		
clock i	pox	0.0000	0.0000	0.0000	0.0000 (0.00%)		
regist	er.	1.1748	B. 8466e-02	3.9390#407	1.3027 (14.375)		
requent	tist	0,0000	0,0000	0.0000	0.0000 (0.00%)		
combin	ational	5.8375	1.8655	6.0590e+07	7.7636 (85.63%)		
		7.015314	1.0540 -	·····				
1		7.0123 800	1.9540 8	a avaansian ha	9.0003 40			
denign	vision>							
4					1			
Log H	istory							Opto
design we	sints [
	1							10
bjects or d	rag a box to s	elect (Hold Ctrl I	o add, Shift to rem	ove)				
III Demin	all		Terminal		S Dation Vision			2

Figure 5: Simulation result of Power Report

Table II. Synthesized Power Report

S.No	Description	Area
1	Cell Internal Power	7.0123mW
2	Net Switching Power	1.9540mW
3	Total leakage Power	9.9980pW
4	Total Power	9.0663mW

Figure 6: Block diagram of the proposed eight parallel data-path 512-point modified FFT/IFFT architecture.

Table III: Performance of The proposed FFT architecture

Parameter	Proposed	[3]	[5]	
FFT size	512	2048	2048	
Technology	120nm	90nm	90nm	
No. of data-path	8	4	8	
FFT algorithm	Modified Radix-2 ⁵	Mixed radix	Mixed radix	
Gate Count	17201	20444	21224	
Architecture	MDF	MDF	MDF	
Throughput	2.4GS/s	1.2	2.2	
Power consumption (mW)	9.0663	45	60	

V. CONCLUSION

The modified radix-2⁵ algorithm and the eight parallel data-path 512-point modified radix-2⁵ FFT architecture have been proposed with 2.4GS/s for OFDM-based WPAN applications. The number of complex Booth multipliers and twiddle factor LUTs are reduced using the modified radix-2⁵ algorithm. The proposed modified radix-2⁵ FFT architecture is the most area-efficient architecture for the eight parallel 512-point MDF FFT architecture. The highest throughput rate is up to 2.4GS/s at the clock frequency of 300MHz. The proposed architecture has potential applications in high rate OFDM-based WPAN systems.

REFERENCES

- Taesang Cho and Hannho lee, "A High-Speed Low Complexity Modified Radix-2⁵ FFT Processor for High Rate WPAN Application" IEEE Trans. VLSI SYSTEMS, vol.21, no.1, JANUARY 2013.
- [2] J. Lee and H. Lee, "A high-speed two-parallel FFT/IFFT processor for MB-OFDMUWB systems," IEICE Trans. Fundam., vol. E91-A, no. 4, pp. 1206–1211, Apr. 2008.
- [3] Y. Lin, H. Liu, and C. Lee, "A 1-GS/s FFT/IFFT processor for UWB applications," IEEE J. Solid-State Circuits, vol. 40, no. 8, pp.1726–1735, Aug. 2005.
- [4] Y. Chen, Y. Tsao, Y. Wei, C. Lin, and C. Lee, "An indexed-scaling pipelined FFT processor for OFDM-based WPAN applications," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 2, pp. 146–150, Feb. 2008.
- [5] M. Shin and H. Lee, "A high-speed four-parallel FFT processor for UWB applications," in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2008, pp. 960–963.
- [6] S. Tang, J. Tsai, and T. Chang, "A 2.4-GS/s FFT processor for OFDM based WPAN applications," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 6, pp. 451–455, Jun. 2010.
- [7] Huang and S. Chen, "A green FFT processor with 2.5-GS/s for IEEE 802.15.3c (WPANs)," in Proc. Int. Conf. Green Circuits Syst. (ICGCS), 2010, pp. 9–13.
- [8] T. Cho, H. Lee, J. Park, and C. Park, "A high-speed low-complexity modified radix-2⁵ FFT processor for gigabit WPAN applications," in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2011, pp. 1259–1262.
- [9] A. Cortes, I. Velez, and J. F. Sevillano, "Radix FFTs: Matrical representation and SDC/SDF pipeline implementation," IEEE Trans. Signal Process., vol. 57, no. 7, pp. 2824–2839, Jul. 2009.
- [10] K. Cho, K. Lee, J. Chung, and K. Parhi, "Design of low-error fixed width modified Booth multiplier," IEEE Trans. Very Large Scale Integer. (VLSI) Syst., vol. 12, no. 5, pp. 522–531, May 2004.
- [11] R. I. Hartley, "Sub expression sharing in filters using Exp. Briefs, vol. 43, no. 10, pp. 677–688, Oct. 1996.

B. Pushparaj was born in Sattur, Tamil Nadu (TN), India, in 1988. He received the B.E degree in Electronic and Communication Engineering from P.S.R.Engineering College, Sivakasi, Tamilnadu, India, in April 2010. He is Currently Pursing his M.E degree in VLSI Design from K.S.Rangasamy College of Technology, Anna University Chennai Tamilnadu, India from 2011 from 2013. He is Member of IEEE . His research interest include low Power VLSI Design ,Digital Signal Processing Architecture using Low Power.

C. Paramasivam was born in Erode , Tamil Nadu (TN), India, in 1983. He received B.E degree from Kongu Engineering College ,Perundurai,Bharathiyar University,India in 2004 and the M.E degree from Kongu Engineering College ,Perundurai,Anna University Chennai,India in 2007.Since 2007 he is Working as Assistant Professor in K.S.Rangasamy College of Technology, Tamilnadu,India. He is Member of IEEE and ISTE.He isresearch interest include low Power VLSI Design.